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Modeling Behavior as Dynamic Sequential
States: Introduction to the Special Issue

Brian P. Flaherty1 and Lawrence M. Scheier2,3

Abstract
This special issue of Evaluation and The Health Professions focuses on applications and extensions of latent transition analysis (LTA),
a longitudinal parameterization of the latent class (LC) model. LTA is a model of discrete or qualitative change over time among
potentially complex states (e.g., patterns of recent drug use or abuse experiences), commonly referred to as latent classes, latent
profiles, or latent statuses. Frequently, researchers will distinguish the term “classes” for cross-sectional studies and with LTA use
“statuses” to indicate the concept of “dynamic change” with individuals shifting in their response patterns and associated statuses
over time. It goes without saying that LTA models are underutilized, although quite flexible. This special issue showcases articles
that apply LTA and extend the capabilities of this approach to modeling discrete change in new ways.
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This special issue of Evaluation and The Health Professions

focuses on applications and extensions of latent transition anal-

ysis (LTA; Collins & Lanza, 2010; Collins & Wugalter, 1992),

a longitudinal parameterization of the latent class (LC) model

(Goodman, 1974; McCutcheon, 1987). LTA is a model of dis-

crete or qualitative change over time among potentially com-

plex states (e.g., patterns of recent drug use or abuse

experiences), commonly referred to as latent classes, latent

profiles, or latent statuses. Frequently, researchers will distin-

guish the term “classes” for cross-sectional studies and with

LTA use “statuses” to indicate the concept of “dynamic

change” with individuals shifting in their response patterns and

associated statuses over time. It goes without saying that LTA

models are underutilized, although quite flexible. This special

issue showcases articles that apply LTA and extend the cap-

abilities of this approach to modeling discrete change in new

ways.1

Overview of LCA and LTA

The LC model contains a categorical latent variable analogous

to the continuous latent variables of factor analysis. In factor

analysis (Gorsuch, 1983), one postulates one or more latent

continuous dimensions that explain/account for the covariance

among the items. Similarly, one or more LC variables may be

postulated to account for the bivariate associations among a set

of measured variables. Whereas dimensions (usually associated

with factor analysis models) organize people/observations

from lowest to highest, LC variables are typically nominal,

with no inherent ordering (see Croon, 1990, for ordered

classes). Latent classes may differ both by degree, as well as

qualitatively. Thus, we commonly speak of patterns or unique

configurations of behavior (or responses) when discussing

latent classes. In essence, the difference between one class and

another emphasizes the unique “composition” of behavior for

individuals that are members of the class.

Latent class models were initially developed in sociology

(Lazarsfeld & Henry, 1968). These models identify homoge-

neous subgroups (i.e., classes) of observations in a parent pop-

ulation. Classes are latent, because they are not directly

observable. We infer both the latent class structure of the pop-

ulation, as well as individual’s likely class membership from

the data. Latent class models entail relatively few assumptions.

One assumption is that the proposed number of classes are

exhaustive and mutually exclusive, meaning everyone in the

population is a member of one and only one class. Like other

basic measurement models, the latent class model also depends

on an assumption of conditional or local independence. This

means that the categorical latent variable (usually denoted by

“C”) alone accounts for or explains the associations between all

the item pairs; there are no residual associations between items

once we take the categorical latent variable into account.

Restated, once we know someone’s latent class membership,

their item responses are statistically independent.
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The latent class model includes two types of parameters:

latent class proportions and conditional response probabilities.

The latent class proportions are the expected proportion of the

parent population that is estimated to be in a specific class. The

conditional response probabilities are the expected probability

that a member of a specific class will make a specific response.

As an example, Bray et al. (2021) have a latent class they label

Experimental Reasons (for using marijuana). At the first time-

point in their data, this class comprises nearly 20% of the

population. Members of this class have a predicted probability

of saying “Yes” to a question about using marijuana to “see

what it is like” of 0.86, or 86%. This can be interpreted as

members of this class are expected to say “Yes” to this question

86% of the time. In contrast, members of this class are only

approximately 10% likely to respond “Yes” to a question about

using marijuana to relax. However, members of the class

labeled Escape þ Coping Reasons are 95% likely to say “Yes”

to the question about using marijuana to relax. Latent class

labels are derived by examining the conditional response prob-

abilities to identify characteristics that help capture unique

descriptive features of members of the class. This interpretation

is conceptually similar to interpreting factors based upon factor

loadings.

The latent transition model includes the two parameter sets

described above, but also adds transition probabilities. These

parameters capture the likelihood of moving from one status to

another over time and thus give the procedure the name “stage-

sequential models.” Once estimated, the transition probabilities

are usually presented in a rectangular format with the diagonals

indicating the probability of “staying” in a particular status

over time and the off-diagonals indicating the probability of

moving from one status to another. Where development is

expected to remain fairly stable over time (and members of

one status are unlikely to move to a different status) the diag-

onals are likely to be high in magnitude (i.e., .85). In the case

where diagonals are moderately low (i.e., .15) there is likely to

be considerable movement to one or more statuses over time.

Measurement

Up until this point, we have provided a brief overview of the

mechanics of LC models. The LC model is a measurement

model, seeking to explain item responses in terms of a more

parsimonious representation (there could be as many classes as

there are response patterns). As mentioned, the latent class

model was initially developed for understanding the structure

underlying multi-way frequency tables. For instance, in a

model with four questions, each with binary responses “Yes”

and “No,” there are 24 possible response profiles (YYYY,

YYYN, YYNY, . . . , NNNN). This is the data analyzed in LC

and LTA models. In confirmatory factor analysis and structural

equation models (Hayduk, 1987), the data covariance matrix

contains all the necessary information. In latent class and latent

transition models, a cross-tabulation of all measured items (as

demonstrated with the four sample items presented above) is

the parallel data structure needed for the analysis.

Time Scale and Treatment

Longitudinal data, such as panel surveys (Lazarsfeld, 1940) or

health promotion interventions with follow-ups conducted

once each year for 3 years, are readily amenable to analysis

with LTA (e.g., Spoth et al., 1999). There are many applica-

tions that use LTA to analyze prospective data. Examples of

how this technique can be applied are found in education

emphasizing developmental studies of motivation (Gillet

et al., 2017), in medical research with studies of psychiatric

comorbidity (McElroy et al., 2017), occupational studies of job

insecurity and mental health (Elst et al., 2018), naturalistic

studies emphasizing the developmental progression of sub-

stance use (Clendennen et al., 2019), and longitudinal studies

of functional impairment in individuals exposed to community-

based treatment (Stephens et al., 2009). In all of these exam-

ples, the latent class and latent transition models are probability

models, although one can parameterize them as log-linear mod-

els (Bray et al., 2010). Traditionally, with intervention or long-

itudinal follow-up studies, measurements are typically widely

spaced, for example, students assessed in school where they

participated in an intervention can be assessed annually either

each fall or each spring. In studies that employ this type of

assessment protocol, measurements are assumed to have been

collected at a common time or period. To illustrate, Griffin

et al. (2021) use data collected in seventh grade, again in the

10th grade, and then again as young adults (23–26). These data

are referred to as discrete time data with the intent of mapping

change over time in the configuration of skills between these

formative developmental years.

While panel studies are typical applications, this special

issue includes three applications that treat time atypically.

Lange et al. (2021) take a continuous time perspective. Rather

than respondents measured at uniform discrete time points, the

approach used by these authors allows respondents to have

different numbers of assessments with different spacing, akin

to survival analysis (Hosmer et al., 2011). However, unlike

survival analysis, the response assessed in Lange et al. is a

latent state representing cancer or no cancer. In contrast, Lee

et al. (2021) do not model transitions per se, but rather collapse

high frequency latent class combinations across time into a

reduced set they refer to as latent profiles, common sets of

latent class memberships over time. Voglesmeier et al.

(2021) also adopt a continuous time LTA approach to intensive

longitudinal data (Schafer & Walls, 2006), such as data pro-

duced by experience sampling (Larson & Csikszentmihalyi,

1983) or ecological momentary assessment (Shiffman et al.,

2008).

Models of Change

Continuous models of change, such as growth curve models

(Rogosa et al., 1982) typically model change over-time captur-

ing development as a smooth function of time, although these

models have grown to include discontinuities, as observed in

regression discontinuity designs (see Imbens & Lemieux, 2008,
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for an example, and also see Deza, 2015) and piecewise growth

models with discontinuous slopes (e.g., Chou et al., 2004; Li

et al., 2001). In the typical growth model, parameters are

obtained reflecting the intercept (starting point before growth)

and slope (rate of growth over time). Additional parameters

include variance terms reflecting dispersion in the slope

(inter-individual differences in the rate of growth) and intercept

(not everyone starts at the same point). Growth for the group as

a whole is then modeled over time using mean change from one

point in time to another for as many timepoints that data is

collected. When the individual points representing means are

connected over time, it portrays a “trajectory” or curve captur-

ing developmental change.

In contrast, models of discrete change treat change and

development as state changes, not as a smooth function (i.e.,

trajectory). States, which are the focus of discrete sequential

models of change, represent a particular configuration of beha-

vior, skills, cognitions or functioning that are determined based

on the response probabilities associated with each class or sta-

tus. Members of one state are uniquely different from another

in the composition of their behavior (conditional response

probabilities are used to distinguish states and class enumera-

tion is based on several model fit indices). For instance, a state

could represent youth that only drink alcohol but endorse using

no other drug. Over time a subset of these youth may progress

in their use of substances to use alcohol and cigarettes, or

alcohol and marijuana. The different states are qualitatively

distinct based on the unique patterns or “composition” of beha-

viors (Lanza et al., 2010; Maldonado-Molina & Lanza, 2010).

Additional examples of states may include degree of alcohol

consumption and associated symptomatology with one state

containing individuals that are moderate drinkers with few

symptoms of abuse or dependence whereas another state can

include high-risk or heavy drinkers with profound symptoms of

abuse or dependence (Guo et al., 2000).

Introducing Covariates

In many cases, researchers wish to identify predictors of class

membership or transitions between latent statuses. The intent

of using covariates or explanatory variables is to help charac-

terize members of a particular class as part of structural valida-

tion. In addition to being distinguished based on their

conditional response probabilities, other demographic, person-

ality, familial, or contextual factors may be associated with

class or status membership. The introduction of covariates into

a LCA or LTA model raises an important issue. The probabil-

istic nature of these models makes it possible for the covariate

to influence within-class response distributions (i.e., the mea-

surement model has to be re-estimated with the introduction of

each covariate). In other words, introduction of covariates

could potentially shift the class membership profile. Vermunt

(2010, and 2021) addressed this issue and provided an alterna-

tive means of estimating class membership in the presence of

both categorical and continuous covariates. Subsequently,

Nylund-Gibson et al. (2014) provided an exposition of this

approach including how to model distal outcomes (conse-

quences predicted by class membership) using educational data

on kindergarten readiness. Asparouhov and Muthén (2014)

then pointed to the imperfect nature of prior classify-analyze

approaches and showed how a more robust stepwise approach

can be integrated into statistical modeling programs like Mplus

(Muthén & Muthén, 1998–2012) as part of an auxiliary com-

mand for a mixture model (R3STEP).

In the Mplus framework, the LC model is first estimated

with class enumeration based on penalty-based model fit

indices, with consideration of latent class separation and homo-

geneity. Individuals are then assigned to their respective

classes using posterior class membership probabilities, which

are then fixed (accounting for measurement error). The model

is then configured as a multinomial logistic regression predict-

ing class membership from explanatory measures (covariates)

while accounting for possible “classification error” that arises

given the probabilistic nature of LCA/LTA techniques (log

ratios or threshold parameters are attenuated for measurement

error given the LC indicators are fallible). This procedure can

be extended to the LTA model with measurement invariance

and positing covariate effects.

With these modeling caveats in mind, the articles in this

special issue plough headfirst into the issues of modeling

dynamic sequential change, using different formats to show-

case the use of these intriguing techniques. The issue is divided

between articles that showcase the methodological features of

either LTA and those that implement these techniques to illus-

trate their application in different “evaluation” and health-

related settings. In all of these instances, the focus rests with

modeling discrete dynamic change as exemplified by the LTA

framework. In the first article Bray, Bruglund, Evans-Polce,

and Patrick provide an overview of LTA and then use it to

examine stability and change among classes of reasons for

marijuana use in a nationally representative sample of young

adults. They first use LCA to identify classes of respondents

with similar patterns of reasons for marijuana use. They do this

separately by measurement occasion and find five distinct

classes at both times. The authors then model transitions among

these classes using LTA. Following this, they examine the

ability of several covariates to predict baseline class member-

ship, as well as predict transitions, the latter capturing the

influence of covariates on movement between statuses (i.e.,

reasons for marijuana use) at the two time points.

Griffin, Scheier, Komarc, and Botvin examine latent

statuses of self-management skills, as well as transitions

between statuses from seventh grade to 10th grade in a large

school-based sample. The type of skills they include are inte-

gral to how youth manage their emotions (affective) and reduce

stress, engage in self-talk to reinforce themselves (cognitive)

and control their behavior (self-control). Taken as a whole,

these skills are benchmarks of adult role socialization and pro-

tective against early-stage drug use (Griffin et al., 2001, 2002).

The authors examine whether discrete change in cognitive and

affective self-management skills influences later alcohol use.

This etiology/consequence study emphasizes skills that are the
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core active ingredients of a drug prevention program (Botvin &

Griffin, 2015; Life Skills Training), although the authors’ anal-

yses are restricted to untreated control youth not exposed to the

intervention. The study represents an extension of prior work

that modeled growth in self-management skills (Griffin et al.,

2015). In the current study, the focus rests more with empiri-

cally confirming the “complexion” of self-management skills

and determining whether status membership influences young

adult alcohol use. Their findings show that youth who deterio-

rate in their self-management skills are at greater risk for sub-

sequent alcohol use as young adults.

Lange et al., as mentioned above, take a different approach

to modeling behavior change as part of a study on cancer risk

prediction. They grapple with the issue of prostate cancer diag-

nosis, which as they point out, can be flawed for several rea-

sons. One of the more important considerations is that a host of

risk factors can influence diagnosis, some obfuscating impor-

tant signals of cancer (i.e., differential detection) and causing

spurious (attenuate or inflate) associations. In addition, the

various screening tests used for diagnosis are themselves inac-

curate at times lacking perfect sensitivity and specificity. The

authors propose to model the association of relevant risk factors

(i.e., family history and race) and “onset” of cancer, to avoid

what they term as “detection bias” that can occur in routine

cancer screening (e.g., biopsies are fallible). To do this, they

posit a two-class latent disease model consisting of (unob-

served) cancer onset or not with imperfect diagnostic tests as

the class indicators. As they suggest, this strategy “decouples”

the latent disease onset from the diagnostic process, the latter

which is rife with error. In addition, rather than model transi-

tions between fixed time-points, as is customary with LTA

applications, the authors model transitions in continuous time

with a latent binary state. This approach produces standard

“hazard ratios” for disease onset corresponding to covariate

effects over time.

Lee, Kim, Leatherdale, and Chung, approach discrete

change over time by assembling “profiles” of latent statuses

over time to model youth alcohol use embedded in a multi-

level framework. In their nested or hierarchical model, stu-

dents’ behavior forms the basis of Level I indicators while

aggregate school behavior forms the basis of Level II indica-

tors. The assumption in this framework is that the behavior of

students within a school will share closer resemblance com-

pared to students from different schools (i.e., clustering), per-

haps because of contextual (i.e., socioeconomic or cultural)

influences in addition to social contagion and peer socialization

(e.g., Scheier et al., 2002). Neglecting the influence of cluster-

ing can bias standard errors (and increase Type I errors) as

some variance in individual behavior can be attributed to the

larger cluster unit (i.e., schools). They use this multi-level

framework, which controls for the intraclass correlation, to

investigate sequential drinking patterns in a 9-year study of

youth health behaviors conducted with 64 Canadian schools.

The cross-sectional models identify distinct patterns of con-

sumption including non-drinkers, ever lifetime, and binge drin-

kers. The sequential models reveal non-drinkers who stay, light

drinkers who advance in their consumption patterns, and heavy

drinkers who also advance over time. At the school level

(assessing contextual factors that can influence individual-

level drinking) they identify low-use (composed primarily of

non-drinkers who remained so) and high-use schools (com-

posed primarily of binge drinkers that advance in their con-

sumption patterns over time), subgroups that would not have

otherwise been noted using only an individual-level model.

They also conditioned the level I model on race and gender,

to assess the importance of these socializing influences as well

as condition the level II model on alcohol retail density to

assess neighborhood contextual effects. Their findings give

pause and consideration to the application of prevention pro-

grams focusing not only on the individual’s behavior (i.e., dis-

rupting early-stage alcohol use to prevent drug progression) but

also school-based climate programs that can target the social

ecology of drinking including correcting misperceptions (i.e.,

norms) that underage drinking is socially tolerated.

Voglesmeier et al. (2021) apply LC and LTA to within-day

dynamics of adolescent affective well-being. One goal of this

work is to examine and test different measurement structures in

different contexts. At some times or in some contexts, the

associations between items may be different: item-factor asso-

ciations may vary. Measurement invariance (Meredith, 1993)

refers to the extent a factor structure is similar over time and/or

across groups. Mistakenly assuming measurement invariance

across contexts likely biases results in unpredictable ways.

Additionally, this approach misrepresents the stability of psy-

chological constructs. Rather, Vogelsmeier et al. propose a

latent transition model in which the latent states are character-

ized by different item to latent-variable associations, i.e. mea-

surement models. Additionally, Vogelsmeier et al. develop this

model for ordinal indicators, so the measurement model is an

item-response model (Embretson & Reise, 2013). Item-

response models are measurement models similar to factor

analysis, in that they posit a continuous underlying dimension,

however, the measured items are categorical. These authors

demonstrate this model in a sample of 250 adolescents mea-

sured in three 1-week bursts over a period of about 9 months.

They present a model with two latent states corresponding to

two different two-factor measurement models. As a final step,

Vogelsmeier et al. classify the transitions over the three assess-

ments into classes representing common transition patterns

over the three waves, similar to Lee et al. (2021). Vogelsmeier

et al. 2021 describe emerging emotional stability among some

of these adolescents, as well as contextual effects on the affect

factor structure.

It gives us great pleasure to assemble the different articles in

this special issue. They are at once comprehensive, illustrative,

and insightful. The articles are rigorous in their demonstration

of new modeling techniques and promising in terms of their

utility. For the articles proposing new methods and new angles

on data analysis, there will be a lag between when these tech-

niques are presented to the scientific community and then find

their way into canned statistical programs, or discussion boards

hinting of their possibility. In either case, readers of this special
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issue get to digest these novel applications, map their current

and future work to these techniques for what they can reveal

about latent dynamic change and perhaps use these techniques

to learn more about hidden features of their own data.
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Note

1. Although we emphasized “latent Markov models” in the call for

papers and reinforced the value of this approach to the various

special issue contributors, the LTA framework and Markov model

are similar in mathematical form and application. Readers are

referred to Kaplan (2008), who provides an excellent discussion

of manifest Markov chain models and latent Markov models for

studying stage-sequential development.
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